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Abstract 20 

The Operational Land Imager (OLI) onboard Landsat-8 satellite can provide remote sensing 21 

reflectance (Rrs) of aquatic environments with high spatial resolution (30 m), allowing for 22 

benthic habitat mapping and monitoring of bathymetry and water column optical properties. To 23 

facilitate these applications, accurate sensor-derived Rrs is required. In this study, we assess 24 

atmospheric correction schemes, including NASA’s NIR-SWIR approach, Acolite’s NIR and 25 

SWIR approaches and the cloud-shadow approach. We provide the first comprehensive 26 

evaluation for Landsat-8 Rrs retrievals in optically shallow coral reefs, along with an 27 

investigation of Landsat-8 Rrs products in a temperate turbid embayment. The obtained Landsat-28 

8 Rrs data products are evaluated with concurrent in situ hyperspectral Rrs measurements. Our 29 

analyses show that the NASA and the cloud-shadow approaches generated reliable Rrs products 30 

across shallow coral reefs and optically deep waters. This evaluation suggests that high quality 31 

Rrs products are achievable from the Landsat-8 satellite in optically shallow environments, which 32 

supports further application of Landsat-8 type measurements for coral reef studies.  33 

  34 

Keywords: Landsat-8; atmospheric correction; remote sensing reflectance; coral reefs; ocean 35 

color.   36 
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1. Introduction 37 

Aquatic biodiversity and environmental science have entered a new era with the availability 38 

of advanced ocean color remote sensing imagers (Turner et al., 2015). Among many other 39 

remote sensors, such as those operated by NASA, NOAA, USGS and ESA, Landsat-8 satellite is 40 

the continuation mission to its predecessors with coverage of coastal ecosystems (Loveland and 41 

Irons, 2016; Roy et al., 2014). The Operational Land Imager (OLI) onboard Landsat-8 can 42 

provide remote sensing reflectance (Rrs, sr-1) of aquatic environments with high spatial resolution 43 

(30 m), allowing the monitoring of aquatic ecology and associated environmental parameters 44 

(e.g., Andréfouët et al., 2001; Olmanson et al., 2008; Palandro et al., 2008). Currently, 45 

quantitative evaluation of Landsat-8 Rrs products in optically diverse aquatic environments, 46 

particularly of shallow waters including coral reefs, is rare. Non-validated Landsat-8 Rrs products 47 

limit their applicability and introduce unknown uncertainties in aquatic ecology and water 48 

quality studies in coastal environments.  49 

The OLI instrument is equipped with four visible bands (443, 482, 561 and 655 nm) and has 50 

improved signal-to-noise ratios (SNR) (Schott et al., 2016) and radiometric calibration 51 

(Markham et al., 2014). Thus it has the potential to retrieve Rrs products with a higher quality 52 

compared to its predecessors. Retrieval of Rrs products from ocean color satellites requires an 53 

atmospheric correction (AC) algorithm (IOCCG, 2010). Existing operational AC schemes were 54 

primarily developed for clear oceanic waters (Gordon and Wang, 1994), where the assumption of 55 

zero water-leaving radiance (Lw, μW cm-2 sr-1 nm-1) at the near-infrared (NIR) bands is valid 56 

(a.k.a. “black pixels”). For more turbid waters, a combination of NIR and shortwave-infrared 57 

(SWIR) bands are used to select the aerosol types (Wang and Shi, 2007), with any non-negligible 58 
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Lw derived with an iterative approach (Bailey et al., 2010) through NASA’s SeaDAS processing 59 

software (Franz et al., 2015). Acolite is another radiative transfer (RT)-based AC system 60 

(Vanhellemont and Ruddick, 2014;2015). Both SeaDAS and Acolite systems can be used for 61 

atmospheric correction of Landsat-8 Level-1 measurements. In addition, some ad hoc AC 62 

approaches have been developed and applied that utilize radiative transfer-based codes such as 63 

6S model (Giardino et al., 2014). Further, image-based models have also shown promise to aid 64 

atmospheric correction for both optically shallow and deep environments (Amin et al., 2014; Lee 65 

et al., 2007; Zhang et al., 2017). Despite the wide spectrum of available AC schemes, the 66 

performance of these algorithms in optically shallow waters is rarely evaluated. It remains 67 

uncertain which AC scheme can deliver reliable Rrs products from Landsat-8 measurements in 68 

various water bodies. 69 

The Rrs products of operational ocean color satellites (e.g., MODIS Aqua and SNPP VIIRS) 70 

are usually validated through dedicated efforts with the use of radiometrically and spectrally 71 

accurate in situ Rrs matchups retrieved within a short period of time from an overpass (± 3 h) 72 

(Hlaing et al., 2014; Mélin et al., 2007; Zibordi et al., 2009b). However, the lack of in situ 73 

matchup data hinders the validation of the Landsat-8 Rrs products. Amongst the earlier efforts, 74 

Zheng et al. (2016) presented a dozen in situ and Landsat-8 Rrs matchups in an extremely turbid 75 

lake but with the matchup time relaxed to ±6 hours; a large time window might contribute 76 

significantly to the differences observed between field and satellite data. Pahlevan et al. (2016) 77 

provided some preliminary results of Landsat-8 Rrs data in Boston Harbor but focused on the 78 

Acolite scheme. With the Ocean Color Aerosol Robotic Network (AERONET-OC) (Zibordi et 79 

al., 2006) data, Pahlevan et al. (2017) further evaluated the performance of the AC schemes 80 

implemented in SeaDAS and reported that a combination of the 865 nm and 2201 nm bands 81 
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provided generally better Rrs products. Although the Landsat-8 products can be “cross-validated” 82 

with other available ocean color satellite products (Qiu et al., 2017), the data quality of the 83 

reference data used therein is often underdetermined. To date, Landsat-8 Rrs products are rarely 84 

evaluated in optically shallow environments, despite the important value of Landsat-8 imagery in 85 

shallow water remote sensing (Lymburner et al., 2016; Pacheco et al., 2015). The earlier 86 

qualitative assessments of Landsat-8 Rrs retrievals were limited by available matchup data 87 

(Giardino et al., 2014; Yadav et al., 2017). Considering these existing issues and challenges with 88 

data product validations, it is critical that the performance of Landsat-8 be thoroughly assessed 89 

with accurate in situ matchups for a wide range of nearshore waters. 90 

Our objective is to quantitatively assess the performance of existing AC  schemes for 91 

Landsat-8 in coral reefs and turbid water environments that include NASA’s standard NIR-92 

SWIR approach (Franz et al., 2015), the Acolite approach (Vanhellemont and Ruddick, 93 

2014;2015), and the cloud-shadow approach (CSA) (Lee et al., 2007). To our best knowledge, 94 

this is the first comprehensive evaluation of Landsat-8 Rrs retrievals in optically shallow coral 95 

reef waters. All Rrs retrievals are validated with concurrent high-quality in situ measurements of 96 

hyperspectral Rrs spectra (within ±1.5h of overpass). We demonstrate that the NASA and the 97 

cloud-shadow approaches generate the most reliable Rrs retrievals across shallow coral reefs and 98 

optically deep waters. It is confirmed that the Landsat-8 instrument can indeed provide high 99 

quality Rrs measurements for optically shallow waters.  100 

 101 
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2. Data and methods 102 

2.1 Study areas 103 

The in situ radiometric measurements for this effort were conducted in a broad range of 104 

aquatic environments. They include the optically shallow coral reef environments of La Parguera 105 

Natural Reserve, Puerto Rico (Figure 1a), Maui, Hawaii (Figure 1b), and Florida Keys (Figure 106 

1c). The La Parguera Natural Reserve has the most extensive coral reef ecosystem in Puerto Rico 107 

as well as a coastal mangrove fringe, mangrove islands and seagrass meadows (Pittman et al., 108 

2010). The patch reefs consist mostly of hard and soft corals (Figure 2a), with abundant 109 

seagrasses on the shallow back-reef lagoons (Figure 2b). The water depths vary from ~1 m up to 110 

20-30 m at the shelf edge. The chlorophyll a concentrations (CHL, mg m-3) at these sites are 111 

~0.2-0.3 mg m-3 (Otero and Carbery, 2005). The southwest coasts of Maui have abundant fringe 112 

corals with diverse species, which are under great environmental pressures (Prouty et al., 2017; 113 

Rodgers et al., 2015). Our measurements in Maui were obtained from 15 sites distributed in 114 

Kahekili, Launiupoko and Olowalu areas, where the natural coral formations provide a canopy of 115 

hard corals (Figure 2c and Figure 2d) that are structurally complex with water depths varying 116 

from ~1 m to 10 m. These Maui stations are characteristic of extremely clear waters, with CHL 117 

as low as ~0.15 mg m-3 (Wedding et al., 2018). Four stations were measured in the coral reefs of 118 

Florida Keys with water depths ranging from 3 to 7 m, where the CHL varies around 0.3-0.6 mg 119 

m-3. 120 

The waters of Massachusetts Bay (Figure 1d) are usually strongly stratified in summer and 121 

autumn, but various factors, including tides, winds, and buoyancy gradients affect water 122 

properties and their distributions. The chlorophyll a concentrations in these relatively turbid 123 
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waters are on average ~1.5 mg m-3. Boston Harbor is a tide-dominated environment with 124 

contributions from several major rivers that include the Charles River, Mystic River and 125 

Neponset River. The waters have annual average concentrations of suspended particulate matter 126 

(SPM) varying from 3 to 8 mg l-1 and CHL from 2 to 5 mg m-3 (Taylor, 2016).  127 

 128 

2.2. In situ hyperspectral remote sensing reflectance and data reduction 129 

A total of 13 field trips were conducted between July 2013 and October 2017, coinciding with 130 

Landsat-8 satellite overpasses (Table 1). During each field campaign, a downward-looking 131 

hyperspectral ocean color radiometer (HyperOCR, Satlantic Inc.) attached with a skylight-132 

blocking apparatus (SBA) was used to directly measure the water-leaving radiance, while an 133 

upward-looking hyperspectral radiometer (HyperOCR, Satlantic Inc.) was employed to measure 134 

the downwelling plane irradiance (Ed, μW cm-2 nm-1). The two radiometers were calibrated over 135 

the spectral domain between ~350-800 nm, with a spectral interval of 3 nm (FWHM 10 nm) and 136 

a radiometric calibration uncertainty of less than 2.5% for radiance and 1.5% for irradiance 137 

(Voss et al., 2010). The SBA system measures Lw with small uncertainty (refer to Section 4.1) 138 

and high accuracy by blocking the light from the sky reflected off the water surface (Lee et al., 139 

2013). In addition, a depth sounder was integrated to simultaneously measure water depths. A 140 

GPS sensor and an underwater high definition (HD) camera were also attached to provide 141 

coordinates (± ~3 m precision) and images of bottom substrates, respectively.  142 

To reduce the Rrs measurement uncertainty, the following protocol was adopted. First, the 143 

radiance and irradiance sensors were installed on two extended arms (30 cm long) so as to 144 

minimize the disturbance of the buoy (Figure 2, Wei et al., 2015; 145 
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https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-9-11826). The instrument package 146 

floated on the water’s surface and simultaneously measured both Ed and Lw and depth for a 147 

period of 3-5 minutes. The instrument was also kept at a distance >20 m from the small operation 148 

boat to avoid boat disturbance to the measurements. The raw data were calibrated to absolute 149 

radiometric units with the manufacturer’s data processing software PROSOFT. The 150 

hyperspectral Ed measurements were then interpolated so that both Ed and Lw have exactly the 151 

same wavelengths. Both spectral Ed and Lw were further used to derive the instantaneous remote 152 

sensing reflectance (Wei et al., 2015), as 153 

 
( , )

( , )
( , )

w
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L t
R t

E t
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=  (1) 154 

with t for the observation time. The Rrs(λ,t) data with instrument inclination greater than 5° were 155 

filtered out. To identify and filter-out potentially contaminated data points due to the radiometric 156 

system occasionally submerged in water or the SBA popped up in air, the following procedures 157 

were further developed and employed. First, the probability density function (PDF) of the Rrs(λ,t) 158 

data sequence at a red band (usually 698 nm) was calculated with the Matlab® normal kernel 159 

smoothing function, ksdensity, at 100 equally spaced points that cover the range of the Rrs(698,t) 160 

data. Then all Rrs(λ,t) spectra with Rrs(698,t) exceeding ±15% of its mode were removed. The 161 

mean Rrs(λ) spectrum was then derived from the remaining Rrs(λ,t) spectra. For measurements 162 

from Massachusetts Bay and Boston Harbor, the self-shading errors were corrected with the 163 

scheme specifically developed for the SBA system (Shang et al., 2017). No appropriate shade 164 

correction algorithm is available for shallow water measurements; nonetheless, the self-shading 165 

errors in coral reefs are small due to the strong contributions from bottom reflectance.    166 
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The Landsat-8 OLI imager has a wide bandpass of 15, 60, 57 and 37 nm for its four visible 167 

bands, respectively. To account for the bandpass mismatch, the in situ Rrs spectra were 168 

convoluted with the OLI’s relative spectral response (RSR) to generate the corresponding Rrs 169 

spectra at the four Landsat-8 bands: 170 
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λ λ
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∫
 (2) 171 

where λ0 is used to represent an OLI band with a center wavelength of λ0. The full spectral RSR 172 

of OLI can be accessed online. 173 

 174 

2.3 Atmospheric correction of Landsat-8 images 175 

The Landsat-8 Level-1 data processed by the Level-1 Product Generation System (LPGS) 176 

were downloaded from the USGS EarthExplorer gateway (http://earthexplorer.usgs.gov). A total 177 

of 7 bands at 443, 482, 561, 655, 865, 1609 and 2201 nm are included in this distribution. The 178 

OLI sensor quantizes data over a 12-bit dynamic range; the distributed products are, however, 179 

rescaled and delivered as 16-bit images (up to 55,000 gray levels). The Landsat-8 images used 180 

for this study are described in Table 1.  181 

The total radiance at Top of Atmosphere (TOA), Lt, is calibrated on-orbit and has been 182 

relatively stable (Markham et al., 2014). Lt can be decomposed into contributions of the 183 

atmosphere, water surface reflection and Lw according to: 184 

 ( ) ( ) ( ) ( )t as wL L T Lλ λ λ λ= +  (3) 185 

where Las is the contribution from the atmosphere and sea surface reflectance, and T the 186 
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transmittance of Lw from sea surface to sensor altitude. To retrieve Lw and then Rrs from the 187 

Level-1 products, two types of atmospheric correction schemes were adopted and assessed: 188 

radiative transfer-based systems (SeaDAS and Acolite) and an image-based approach (CSA), 189 

which are detailed in following texts.  190 

NASA standard approach: The NASA atmospheric correction scheme was implemented by 191 

the SeaDAS data processing system (v7.4) (Franz et al., 2015). Specifically, a look-up table 192 

(LUT) of Rayleigh reflectance is pre-computed (Ahmad et al., 2010). The contributions of 193 

sunglint and whitecaps are modeled as a function of environmental conditions. Estimation of 194 

aerosol radiance is based on the updated aerosol models which are further developed out of the 195 

AERONET observations (Ahmad et al., 2010). To relax the limitation of the “black pixel” 196 

assumption, an iterative scheme is used to estimate the aerosol radiance at the NIR and/or SWIR 197 

bands (Bailey et al., 2010). For Landsat-8 image processing, the OLI bands 5 and 7 (865 and 198 

2201 nm, respectively) were chosen in the present study. This NIR-SWIR band combination 199 

yields the most robust Rrs in moderately turbid waters among all options implemented within 200 

SeaDAS (Pahlevan et al., 2017). All the estimations were conducted on a per-pixel basis. The 201 

residual glint correction was performed with the standard approach (Wang and Bailey, 2001). 202 

The standard Level-2 quality flags including ATMFAIL (Atmospheric correction failure), 203 

LAND (land pixel), CLDICE (Probable cloud or ice contamination), and HILT (very high or 204 

saturated observed radiance) were masked. It is necessary to point out that because radiance is 205 

directionally dependent, Lw from Landsat-8 does not necessarily match the direction of Lw 206 

measured in situ, even when measurements were made at the same time. To reduce the impact of 207 

this angular mismatch in comparing the Lw (or Rrs) value from a satellite sensor with that from in 208 
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situ measurement, it is necessary to employ a bidirectional reflectance distribution function 209 

(BRDF) in order to correct for this angular effect. The BRDF scheme of Morel et al. (2002) is 210 

included in SeaDAS, but is designed for oceanic Case-1 waters. In this effort, the BRDF 211 

correction was turned off because of the nature of either turbid coastal waters of Massachusetts 212 

Bay and Boston Harbor or the optically shallow waters of coral reefs. We acknowledge that not 213 

accounting for BRDF effect may add some extra uncertainty in the validation of the AC schemes 214 

considered in this study, but the impact of this factor is likely small compared to the other 215 

sources in an AC scheme (refer to Section 4.1).  216 

On-orbit vicarious calibration of satellites is an important step for accurate retrieval of remote 217 

sensing reflectance (Bailey et al., 2008; Eplee et al., 2001). There is a set of calibration gains 218 

derived for Landsat-8 based on the SeaDAS system (Franz et al., 2015). But there are no gains 219 

developed specifically for the Acolite system. As a result, no vicarious calibration gains were 220 

applied in our analysis. But the uncertainty associated with vicarious calibration will be 221 

discussed later (refer to Section 4.1).  222 

Acolite/NIR approach: The Acolite module (v20160520.1) uses NIR bands for aerosol 223 

determination (Vanhellemont and Ruddick, 2014), while a LUT generated from 6SV (Vermote et 224 

al., 2006) is used for the Rayleigh correction. The aerosol reflectance ratio ε in bands 4 and 5 225 

(655 and 865 nm) can be derived from clear-water pixels where the water reflectance is 226 

negligible and thus where only the aerosols contribute to the TOA signal. A standard ε = 1 is 227 

assumed to be constant over the whole image. Another assumption for the aerosol correction is 228 

made that the ratio of marine reflectance in these two bands, α, is constant (=8.7). 229 
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Acolite/SWIR approach: This option (v20160520.1) uses two SWIR bands (1609 and 2201 230 

nm) for aerosol determination (Vanhellemont and Ruddick, 2015), where the marine signals are 231 

assumed negligible. Unlike the Acolite/NIR approach, the aerosol type ε is now determined on a 232 

per-pixel basis. In addition, a moving-average filter (kernel size = 32) is included to reduce the 233 

noise. Note that the Acolite scheme has no BRDF correction option to its Rrs products. 234 

Cloud-shadow approach: The cloud-shadow approach is an image-based atmospheric 235 

correction scheme that is appropriate for high-resolution imagery (Lee et al., 2007). It requires 236 

three radiance spectra to be determined from each image, including a bright pixel over clouds, a 237 

shadow pixel and an adjacent sunlit pixel. Specifically, we implemented this scheme with the 238 

following steps: 239 

Step 1: The path radiance from the sea surface to the sensor, Las(λ), was estimated from a pair 240 

of adjacent sunlit pixel and shadow pixel (Lee et al., 2007) 241 

 
( ) ( )

( ) ( )
1 ( ) / ( )

sun sdw

sun t t
as t sky

d d

L L
L L

E E

λ λλ λ
λ λ
−= −

−
 (4) 242 

where Lt
sdw and Lt

sun are the radiance from a shadow pixel and adjacent sunlit pixel, respectively. 243 

The pair is close to each other to ensure that their environmental properties are identical. In our 244 

study, they are given in the units of digital counts. Ed
sky is the downwelling irradiance above the 245 

water surface from the diffuse skylight. Both Ed and Ed
sky were estimated from the RADTRAN 246 

model (Gregg and Carder, 1990) with knowledge of the solar zenith angles at the time of the 247 

Landsat-8 overpass. Note that the impact of errors of Ed
sky/Ed estimation on the results of Las is 248 

small (Lee et al., 2007). 249 
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Step 2: The total radiance of clouds, Lt
cld(λ), was extracted as the mean of the relatively 250 

brighter patch of clouds. It is cautioned that the cloud pixels selected should not make Lt
cld(λ) 251 

saturated.  252 

Step 3: With known Lt
cld(λ) and derived Las(λ), the remote sensing reflectance for each pixel 253 

was determined: 254 

 
( ) ( )

( )
( ) ( )

t as
rs cld

t as

L L
R

L L

λ λλ ρ
λ λ

−=
−

 (5) 255 

where Lt(λ) is the total radiance obtained from the Landsat-8 Level-1 GeoTIFF images, and ρ is 256 

the cloud reflectance (units: sr-1) corresponding to the cloud pixels selected.  257 

The cloud reflectance is an image-dependent property and should be estimated independently. 258 

According to Eq. (5), ρ can be determined with known Rrs and Lt. Here, we assumed a spectrally 259 

flat cloud reflectance as in Lee et al. (2007). Then we used the following steps to determine ρ: 260 

a) A deep-water pixel was located in a coincident SNPP VIIRS overpass using the Ocean 261 

Color Viewer (OCView) (Mikelsons and Wang, 2018). The time difference between VIIRS and 262 

Landsat-8 overpasses was about 2 hours. The quality assurance (QA) scores (Wei et al., 2016) 263 

were accessible from the OCView, which objectively quantify the quality of individual VIIRS 264 

Rrs spectra with the scores varying from 0 to 1 (0 = lowest quality, 1 = highest quality). We only 265 

used Rrs spectra with QA scores greater than 0.8. In this study, the VIIRS remote sensing 266 

reflectance at 551 nm, Rrs(551), varies from 0.0017 to 0.0019 sr-1 in the deep waters of Puerto 267 

Rico and Hawaii, and from 0.0021 to 0.0062 sr-1 in Massachusetts Bay and Boston Harbor, and 268 

is 0.0026 sr-1 in Florida Keys (see Table 2). It is further assumed that Rrs(551) of VIIRS 269 

approximates Rrs(561) of Landsat-8. 270 
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b) The coordinates of the VIIRS pixel in Step a) were used to identify the corresponding 271 

Landsat-8 Level-1 pixel. The total radiance Lt
 (561) (units: digital counts) of this Landsat-8 pixel 272 

was then extracted. Assuming negligible difference in the remote sensing reflectance between 273 

the deep-water pixels of Landsat-8 (30 m) and VIIRS (750 m), we derived ρ from a variant form 274 

of Eq. (5) with the determined Rrs
 (551) and Lt

 (561), as below: 275 

 
(561) (561)

(551)
(561) (561)

cld

t as
rs

t as

L L
R

L L
ρ −=

−
 (6) 276 

In this study it is found that the cloud reflectance varies between 0.032-0.187 sr-1 for the various 277 

clouds selected, with a mean value of ~0.1 sr-1 (Table 2).   278 

There was no explicit sunglint correction employed for the images; and we only observed 279 

moderate sunglint in image LC80050482014124 from La Parguera, Puerto Rico.   280 

 281 

2.4 In situ and satellite matchups and metrics 282 

The satellite pixels with heavy cloud contamination were identified and discarded from 283 

subsequent analysis. Also, no in situ measurements within a short distance (<60 m) to shorelines 284 

were used. A time constraint of ±1.5 hours was followed to create in situ and satellite matchups. 285 

It is noted that the satellite Rrs matchup spectra are often derived as the mean over a 3×3 pixel 286 

neighborhood, where the coefficient of variation of Rrs measurements is small (Bailey and 287 

Werdell, 2006; Hlaing et al., 2013; Jamet et al., 2011; Zibordi et al., 2009a). In this study, 288 

because our measurements were mostly from nearshore complex waters (Figure 1) where the 289 

water depth and bottom benthic type may change drastically over a very short distance, the 290 
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satellite Rrs from the center pixel (i.e., 1×1) of the Landsat-8 images closest to an in situ site was 291 

used for subsequent analysis, rather the conventional average of a 3×3 box.  292 

Several metrics were adopted to evaluate the matchups, including the relative root-mean 293 

square deviation (rRMSD), bias, mean absolute percentage difference (MAPD) and unbiased or 294 

symmetric mean absolute percentage deviation (SMAPD), expressed as 295 
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where Si,1 and Si,2 refer to the satellite products and in situ measurements under investigation, 300 

respectively, and N the number of data pairs. 301 

The cosine distance was derived to quantify the spectral similarity between satellite and in 302 

situ Rrs spectra (e.g. Wei et al., 2016), 303 

 
2 2

,1 ,2 ,1 ,2
1 1 1
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N N N

i i i i

i i i

S S S Sα
= = =

     = ⋅     ∑ ∑ ∑  (11) 304 

where α is the angle formed between the spectra Si,1 and Si,2. 305 

In addition, the QA scores (Wei et al., 2016) were calculated to evaluate the data quality of 306 

Landsat-8 Rrs spectra. Here the original quality assurance system was adapted for the four 307 
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wavelengths and their wide bandpasses of the OLI instrument (accessible at 308 

http://oceanoptics.umb.edu/score_metric). The QA score system is designed specifically for 309 

optically deep aquatic environments. Therefore, in the following analysis, it was only applied to 310 

the satellite measurements in turbid waters of Massachusetts Bay and Boston Harbor. It is 311 

emphasized that the QA system relies on the Rrs reference spectra to represent the spectral 312 

similarity and the upper and lower constraining spectra to define the range of variability. There 313 

are no gaps in the domain of coverage from purple-blue waters to yellow turbid waters. Some 314 

exceptional cases do exist and may not be included in the current QA system, such as the waters 315 

with blooms or oil slicks. However, such outliers was not observed at our study sites. Based on 316 

the total number of available wavelengths with OLI instrument, five levels of quality scores (0, 317 

0.25, 0.5, 0.75 and 1) were quantified and used in the analysis of Rrs quality. 318 

 319 

3. Results 320 

3.1 In situ Rrs spectra in coral reefs and turbid coastal waters 321 

The in situ hyperspectral Rrs spectra are plotted for these optically contrasting waters 322 

separately in Figure 3. These spectra are representative of the light field with moderate solar 323 

zenith angles, 25-45° and 40-60° for coral reefs and turbid waters, respectively. The coral reef 324 

waters are optically shallow, and the Rrs spectra are significantly impacted by bottom 325 

contributions. As shown in Figure 3a, the Rrs spectra in such environments vary over a wide 326 

range of magnitudes and spectral shapes. At the green bands, for instance, Rrs can be as high as 327 

0.055 sr-1 in sandy patches, while it can be as low as 0.005 sr-1 over macroalgae- and/or corals-328 

dominated substrates. The coral reef waters are generally very clear (refer to Section 2.1). 329 
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Depending on the water clarity, depth and bottom reflectance, the maxima of Rrs spectra vary 330 

within a wide spectral domain between 475 and 575 nm. The turbid waters in Boston Harbor and 331 

Massachusetts Bay are optically deep, where the contribution of bottom to Rrs is negligible. The 332 

Rrs spectra from these turbid waters generally peak in the green domain and also exhibit a typical 333 

fluorescence peak around 685 nm (Figure 3b). Note that the magnitudes of Rrs spectra from the 334 

Harbor generally do not exceed 0.015 sr-1, while the Rrs spectra from the Bay are much lower in 335 

magnitude (as low as 0.002 sr-1 at 561 nm) due to elevated absorption-to-scattering ratios of 336 

water constituents.  337 

 338 

3.2 Landsat-8 Rrs product quality in coral reef waters 339 

As stated earlier, the satellite Rrs products in coral reef environments have rarely been 340 

evaluated due to the lack of appropriate in situ matchup data. Our extensive field measurements 341 

allow a first comprehensive performance analysis for such shallow environments. Visual 342 

observation indicates qualitative consistence between the Landsat-8 Rrs spectra (Figure 4) and in 343 

situ data (Figure 3). However, there exist a few questionable spectra, such as the negatively 344 

biased spectra with Acolite/SWIR (Figure 4b) and Acolite/NIR (Figure 4c) and underestimated 345 

bright target spectra with CSA (Figure 4d). According to the cosα metric, the Rrs products from 346 

NASA algorithm exhibit the highest spectral similarity (with high cosα values) to the in situ 347 

matchup spectra (Table 3). It is noticeable that the NASA products have fewer available 348 

matchups (N = 27) when compared to those of Acolite and CSA products (N = 34). This is 349 

mostly due to the missing Thermal Infrared Sensor (TIRS) data in one Landsat-8 image 350 

(LO80050482015063, in Table 1), which are required by SeaDAS (v7.4).  351 
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The scatter plots between in situ and satellite matchup Rrs of shallow coral reef environments 352 

are shown in Figure 5. Among the four comparisons, the NASA products exhibited the smallest 353 

biases from the in situ data, with a linear slope close to 1:1 line and R2 = 0.77. In contrast, the 354 

CSA products have a much larger deviation from 1:1 with a smaller R2, partly due to the 355 

significantly underestimated Rrs for a few brighter targets where the in situ Rrs at blue and green 356 

bands is greater than 0.02 sr-1 (Figure 5d). In this regard, the Acolite products have exhibited 357 

moderate performance (Figure 5b and Figure 5c). According to other criteria including bias, 358 

MAPD and rRMSD, the best overall performance is achieved by the NASA approach, with 359 

MAPD ≈ 25% and rRMSD ≈ 33% in the blue-green domain (Table 3). The Acolite/NIR and 360 

CSA products have moderate performance in these Rrs products with MAPD of ~29% and ~33%, 361 

respectively, and rRMSD of 37% and 43%, respectively. The Rrs products of Acolite/SWIR have 362 

the largest deviations from in situ measurements with MAPD = 34% and rRMSD = 51%, 363 

respectively. Also, the assessment indicates that the NIR approach is slightly advantageous over 364 

the SWIR approach as implemented by Acolite, likely because of the low signal-to-noise ratios 365 

at SWIR bands. Without exception, relatively larger differences are observed at the red band, 366 

mainly because the Rrs values at this band are usually small (with a median value 0.0013 sr-1) in 367 

these waters (see Figure 3a). 368 

It is noted that Acolite and NASA approaches have generated negative Rrs values at certain 369 

bands. The NASA negative products are only found at 655 nm band. For Acolite products, 370 

negative data could be at the blue (443 nm), green and red bands. Statistically, the NASA 371 

approach has the highest appearance of negative Rrs(655) products (26%, Figure 5a), while the 372 

Acolite products have slightly fewer negative values at the red band, 23% for Acolite/SWIR 373 
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(Figure 5b) and 18% for Acolite/NIR (Figure 5c). Such negative data products are likely a result 374 

of inaccurate determination of the aerosol types and/or inherently low Rrs values at such red band.  375 

 376 

3.3 Landsat-8 Rrs product quality in turbid waters 377 

Besides the analyses in the coral reefs, we evaluated the Rrs products in the optically deep 378 

waters of Massachusetts Bay and Boston Harbor. The Landsat-8 Rrs spectra from the matchup 379 

stations are displayed in Figure 6. Among all the products, the Rrs spectra from CSA show no 380 

obvious sign of quality problems. According to the spectral similarity parameter cosα, the CSA 381 

products have generated the best Rrs spectra (Table 3). The fewer matchup data for NASA 382 

products were a result of the change to the Landsat-8 data inventory structure in April 2017, 383 

which made SeaDAS (v7.4) unable to handle the new data structure. Besides which, no clouds 384 

were found in two of the Landsat-8 images over Massachusetts Bay, leading to fewer matchups 385 

for the CSA approach than Acolite products.  386 

 Figure 7 further illustrates relationships between these in situ and satellite matchup Rrs data 387 

and Table 3 provides the validation statistics. Based on these evaluations, strong agreement is 388 

found for the data products from NASA and CSA approaches. They both exhibit fairly good 389 

performance in blue-green domain with MAPD = 18-59% and 31-43%, respectively, and 390 

rRMSD = 24-74% and 39-63%, respectively. It is notable that such a performance is close to that 391 

of the operational satellite ocean color sensors in complex coastal waters (Hlaing et al., 2013; 392 

Zibordi et al., 2009a). It is also interesting to note that the NASA approach has resulted in 393 

systematically underestimated Rrs values, echoing the results observed at AERONET-OC sites 394 

(Pahlevan et al., 2017).  395 
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As with the observations in the coral reefs, the Acolite products in optically deep waters 396 

exhibit slightly larger differences and biases than the NASA and CSA products, but fewer 397 

negative data points compared to the shallow water matchups. Although the Acolite/SWIR and 398 

in situ matchups are closer to the 1:1 line, Acolite/NIR products have shown higher accuracy 399 

with smaller MAPD and rRMSD.  400 

The average QA scores (with the standard deviations) are provided in Table 3. From this 401 

independent criterion, the CSA products are the most reasonable with the highest QA score of 402 

0.88, followed by NASA products with a QA score of 0.79. The Acolite/NIR products are 403 

generally more reasonable with higher QA scores than the Acolite/SWIR products. These 404 

scoring results are in concert with the Rrs matchup evaluations obtained in this study, supporting 405 

that the QA scores can be used as an independent measure for quantitative evaluation of the 406 

Landat-8 Rrs product quality.  407 

 408 

3.4 Overall evaluation of Landsat-8 Rrs data products 409 

To characterize the performance of each atmospheric correction scheme, we combined all 410 

available matchups from optically deep and shallow waters in previous sections and further 411 

assessed the overall Rrs product quality. It is found that the NASA and in situ matchups are the 412 

closest to the 1:1 line with R2 = 0.79 (Figure 8a). Based on the validation metrics and spectral 413 

similarity, the NASA standard approach has also shown the highest performance, immediately 414 

followed by the CSA approach and Acolite/NIR across both deep and shallow waters (Table 4). 415 

Specifically, the MAPD’s vary between 23-33% and 31-38% in blue-green domain for the 416 

NASA and CSA products, respectively. The Acolite/SWIR products show slightly lower 417 
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performance, particularly at blue bands. The lower performance of Acolite/SWIR products, as 418 

indicated by the present datasets, is probably because of the low signal-to-noise ratios of the 419 

SWIR bands which were not specifically designed for the typical radiances encountered over 420 

these water bodies and the biases associated with the aerosol determinations.  421 

 422 

4. Discussion 423 

4.1 Validation uncertainty 424 

Among the four atmospheric correction schemes, the SeaDAS and Acolite systems require 425 

accurate knowledge of aerosol types to obtain high quality Rrs retrievals (Franz et al., 2015; 426 

Vanhellemont and Ruddick, 2014;2015). The two systems employ different mechanisms for 427 

aerosol determination (Section 2.3), which have played a role in their performance as manifested 428 

in the matchup analyses (Section 3). Yet, the uncertainties associated with the aerosol 429 

determinations are generally unknown. The CSA approach is image based and still requires user 430 

decision during the data processing (Lee et al., 2007). It does not need profound radiative 431 

transfer knowledge and absolute calibration of the sensor. Furthermore, it is easy to implement. 432 

However, this image-based procedure requires the radiance from cloud shadows over waters as 433 

input, which may not always be present, thereby limiting to some degree its applicability. 434 

Although the CSA retrievals are not significantly sensitive (<10%) to the random selection of 435 

shadow, sunlit or cloud pixels (Lee et al., 2007; Zhang et al., 2017), the procedure proposed in 436 

this study relies on coincident measurements from the SNPP VIIRS satellite for the 437 

determination of cloud reflectance. In fact, other remote sensors can also be used for this purpose, 438 

including the recently launched VIIRS onboard NOAA-20 satellite and the Ocean and Land 439 
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Color Instrument (OLCI) onboard Sentinel-3 satellite, which together allow for important 440 

overlap in observational coverage. 441 

 Besides the AC procedures, the on-orbit calibration of satellite ocean color sensors is critical 442 

for accurate Rrs retrievals at the water’s surface. As the water-leaving radiance is only about 10% 443 

of the TOA radiance (Gordon and Wang, 1994), a small radiance measurement error at the TOA 444 

can propagate to Lw and Rrs at the water surface as a much larger error. Pahlevan et al. (2014) and 445 

Franz et al. (2015) derived vicarious calibration gains for OLI’s seven bands (443, 482, 561, 655, 446 

865, 1606 and 2201 nm). The former is based on MODTRAN® radiative transfer simulation, 447 

while the latter is developed specifically for SeaDAS. The sensitivity of the Landsat-8 Rrs 448 

retrieval to the selection of vicarious gains was investigated for the SeaDAS and Acolite system. 449 

Application of the vicarious calibration gains of Pahlevan et al. (2014) leads to slightly improved 450 

agreement for the Rrs matchup data, with smaller MAPD’s and rRMSD’s at most of the bands 451 

than those with Franz et al. (2015) (Table 5) and those without vicarious calibration (Table 4). 452 

However, the gains of Pahlevan et al. (2014) also cause overly underestimated Rrs products at the 453 

deep blue band for SeaDAS. In general, as indicated by the comparisons here, the NASA 454 

approach has generated more reliable Rrs products.  455 

The remotely sensed Rrs products in the vicinity of land environments can be biased due to the 456 

adjacency effect caused by complicated multiple scattering in the atmosphere-land system 457 

(Santer and Schmechtig, 2000). Correction of these biases requires accurate knowledge of land 458 

topography, surface albedo and aerosols over land, etc. It is operationally difficult to implement 459 

and so was not included in any of the AC schemes examined in this study.  460 
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BRDF effect partly contributes to the difference between satellite and in situ Rrs products. To 461 

further understand the validation uncertainty, we reprocessed the deep water Landsat-8 images 462 

with SeaDAS by turning on the BRDF correction. It is found that the BRDF-corrected Rrs 463 

products differ by ~5% on average from the BRDF-uncorrected Rrs products, with SMAPD = 3%, 464 

5%, 6% and 4% for the bands of 443, 482, 561 and 655 nm, respectively (refer to Eq.(10)). 465 

These differences are quite small comparing with the MAPD’s given in Figure 3, suggesting that 466 

the current operational BRDF algorithm in SeaDAS does not improve the validation results 467 

considerably, at least for these datasets. After all, the BRDF algorithm of Morel et al. (2002) is 468 

optimized and most suitable for typical oceanic waters. 469 

We further evaluated the uncertainty of in situ Rrs based on the coefficient of variation (CV), 470 

which was derived as the ratio of the standard deviation to mean of all Rrs spectra measured over 471 

the period of 3-5 minutes and after passing through the filtering procedures (see Section 2.2). In 472 

Massachusetts Bay and Boston Harbor, the CV’s for Rrs measurements are generally less than 473 

5%, specifically 4.5%, 4.1%, 3.6% and 5% at bands of 443, 482, 561 and 655 nm, respectively. 474 

These statistics are comparable with earlier reports (Lee et al., 2013; Wei et al., 2015), 475 

suggesting highly stable in situ Rrs measurements. In the coral reefs, the coefficient of variation 476 

is slightly higher (7.9%, 8.4%, 7.8% and 7.5% at the same four bands), partly a result of the 477 

bottom heterogeneity. For either situation, these measurement uncertainties are far below those 478 

of matchup data as shown in this study (Table 3 and Table 4).   479 

The satellite Rrs spectra are often averaged over a box of some number of pixels for matchup 480 

analysis (Bailey and Werdell, 2006; Hlaing et al., 2013; Zibordi et al., 2009a). In practice, if the 481 

CV of valid pixels within the defined box is less than 15%, the satellite Rrs retrievals will be 482 
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included for further analysis (Bailey and Werdell, 2006). The Landsat-8 Rrs measurements in 483 

coral reefs are, however, highly variable in the spatial domain. As a consequence of the spatial 484 

heterogeneity, the CV of a box of 3×3 pixels can be much higher than 15% at all four 485 

wavelengths (Table 6). For the turbid waters of Boston Harbor and Massachusetts Bay, Rrs(482) 486 

and Rrs(561) measurements exhibit limited spatial variability, but large CV is still observable at 487 

443 and 655 nm (Table 6). The large spatial variation revealed in our Landsat-8 measurements 488 

does not support the conventional spatial averaging for matchup validation. Such large spatial 489 

variability in Landsat-8 Rrs retrievals also contributes to the observed matchup uncertainty in 490 

Table 3 and Table 4.  491 

Based on results from these analyses, reliable Rrs products can be achieved from Landsat-8 in 492 

various waters (Table 3), despite the instrument’s lower signal-to-noise ratios comparing to other 493 

operational ocean color satellites. Considering all the challenges discussed above, the agreement 494 

between matchups, particularly of those from CSA and NASA approach, are strong. The Rrs 495 

product accuracy in blue-green bands (MAPD = 21-60% and 31-43%, respectively) are even 496 

close to those obtained by operational ocean color sensors in coastal waters (Hlaing et al., 2013; 497 

Jamet et al., 2011; Zibordi et al., 2009a). With high spatial resolution, the accurate Landsat-8 Rrs 498 

measurements can be used in a variety of aquatic applications.   499 

 500 

4.2 Impacts on water optical property retrievals and reflectance band ratios 501 

The measurement uncertainties in the satellite Rrs products can impact the subsequent ocean 502 

color retrievals derived from analytical or semi-analytical algorithms (Goodman et al., 2008; Lee 503 

et al., 2010; Salama et al., 2011; Wei and Lee, 2015). We estimated the absorption coefficient 504 



25 

 

(apg) due to particles and colored dissolved organic material (CDOM) and the particle 505 

backscattering coefficient (bbp) with Landsat-8 satellite Rrs data and in situ Rrs measurements, 506 

respectively, using a semi-analytical algorithm developed for Landsat-8 for deep waters (Lee et 507 

al., 2016). Comparisons of the SMAPD’s between satellite and in situ retrievals indicate that the 508 

CSA products allow more reliable estimation of apg, while the bbp estimation from NASA 509 

products is more accurate (Figure 9). 510 

For some empirical algorithms using Rrs band ratios, the absolute accuracy of Rrs products 511 

may not play a primary role in determining subsequent ocean color products. Rather, the ratios of 512 

reflectance are important, as quantified by the metric, cosα. For instance, they can be used for the 513 

estimation of chlorophyll a concentrations in optically deep waters (O'Reilly et al., 1998) or the 514 

derivation of shallow-water bathymetry (Stumpf et al., 2003). We provided examples for such 515 

band-ratio comparisons in Figure 10 between Landsat-8 and in situ data. The NASA products 516 

have the smallest deviations in coral reefs, while the CSA products are more accurate in deep 517 

waters – an observation that is consistent with the cosα metric in Table 3 and Table 4.  518 

 519 

4.3 Independent assessment of Landsat-8 Rrs data quality 520 

As discussed in this study, it is difficult to obtain in situ matchups with Landsat-8 521 

measurements, especially because of its 16-day overpass and relatively small spatial coverage 522 

(185 km swath). Yet, it is important to index the quality of each individual Landsat-8 Rrs 523 

spectrum for various ocean color retrievals. Based on results in Table 3, the QA scores provide 524 

an independent quantification for the quality of Rrs spectra. When applied to Landsat-8 images, 525 

the QA scores may further provide insights into the overall quality of the satellite Rrs data as well 526 
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as potential spatial variability. To visualize the effectiveness of this metric, the QA scores were 527 

derived for the Rrs products of one selected image generated from four atmospheric correction 528 

schemes. According to the comparisons, the CSA and NASA products show generally higher 529 

data quality, with an average QA score of 0.73 and 0.60, respectively (Figure 11d and Figure 530 

11a), while the Acolite/SWIR and Acolite/NIR products have quality scores of 0.50 and 0.45, 531 

respectively (Figure 11b and Figure 11c). Besides, the spatial variability of Rrs data quality is 532 

clearly revealed in the QA score maps. For instance, the CSA product shows very high QA 533 

scores in Massachusetts Bay (upper right of the image) while the three others suggest 534 

problematic retrievals in that region. Such contrasts are likely a consequence of the presence of 535 

absorbing aerosols in the air, which the NASA and Acolite algorithms cannot account for 536 

sufficiently. It is cautioned that the current QA system does not necessarily cover every type of 537 

waters occurring in nature. Exceptional cases do exist, for instance, blooms and oil slicks. So a 538 

valid Rrs spectrum might still be scored low if it happens to be an exceptional case and 539 

insufficiently represented by present QA system.      540 

 541 

5. Conclusions 542 

To assess the performance of Landsat-8 OLI Rrs products in aquatic environment, in particular 543 

coral reef systems, we have examined Rrs data products with radiative transfer-based and image-544 

based atmospheric correction schemes. The Rrs products were validated with concurrent in situ 545 

measurements of hyperspectral Rrs data. Specifically, NASA’s atmospheric correction scheme, 546 

the cloud-shadow approach and Acolite’s NIR scheme generated Rrs products with strong 547 

agreement with in situ matchups in optically shallow waters. In the studied optically deep waters, 548 
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NASA’s approach and the cloud-shadow approach were found with the highest performance. 549 

According to all available matchups, the NASA and cloud-shadow approaches demonstrated 550 

overall the highest performance across coral reef environments and turbid waters. It is confirmed 551 

that high quality Rrs products can be achieved from the Landsat-8 satellite, supporting the 552 

application of Landsat-8 measurements in a variety of aquatic studies including coral reefs. 553 

Considering the complexity of natural waters and atmospheric conditions, validation of Landsat-554 

8 OLI Rrs data over various waters is anticipated to be an ongoing task for the Landsat-8 science 555 

community.  556 
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Table 1. Landsat-8/OLI overpasses for comparison with in situ matchups. The symbols 749 
“×” and “-” indicate the availability/unavailability of the Rrs products from the 750 
corresponding atmospheric corrections. 751 

 
Study areas Landsat-8 images 

Acquisition 
time (UTC) 

θs 

Atmospheric correction 
NASA 

standard 
Acolite 

NIR/SWIR 
Cloud 
Shadow 

Coral 
reefs 

La Parguera,  
Puerto Rico 

LC80050482013329 14:52  43° × × × 
LC80050482014124 14:50 23° × × × 
LO80050482015063† 14:50 36° - × × 

LC80050482015319 14:50 41° × × × 

Maui, Hawaii LC80640452017049 20:54 47° × × × 

Florida Keys LC80150432016088 15:50 32° × × × 

Turbid 
waters 

Massachusetts  
Bay and Boston 

Harbor 

LC80110312013211 15:22 40° × × × 
LC80120312015240 15:26 38° × × × 
LC80120312015304 15:26 59° × × - 
LC80120312016243 15:26 38° × × × 
LC80120312016259 15:26 44° × × × 
LC80120312017213† 15:27 40° - × - 

LC80120312017277† 15:27 61° - × × 
        752 
                 †  SeaDAS software (v7.4) is currently unable to process these images due to data compatibility problem.  753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 
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 769 

 770 

 771 

 772 

Table 2. Optical properties used for the derivation of cloud reflectance for Landsat-8 773 
images. 774 

Study areas Landsat-8 images 

Landsat-8 radiance  
(units: digital counts) Rrs(551)   

(sr-1)  
Lat & Lon 

(deg) 
ρ 

(sr-1) 
Lt(561) Las(561) Lt

cld(561) 

La Parguera,  
Puerto Rico 

LC80050482013329 6740 6486 20364 0.0019 17.7621, -67.3544 0.104 
LC80050482014124 8333 7394 24281 0.0018 17.9654, -67.4849 0.032 
LO80050482015063 7371 6908 26360 0.0017 17.7505, -67.0145 0.093 
LC80050482015319 6792 6599 26658 0.0018 17.8802, -67.3943 0.187 

Maui, Hawaii LC80640452017049 6670 6404 25945 0.0019 20.9070, -157.323 0.140 

Florida Keys LC80150432016088 7792 6800 22994 0.0026 24.7343, -80.6781 0.042 

Massachusetts  
Bay and Boston 

Harbor 

LC80110312013211 7639 6949 16460 0.0058 41.4761, -70.3606 0.080 
LC80120312015240 6903 6471 23543 0.0015 42.3495, -70.4128 0.059 
LC80120312015304 - - - - - - 
LC80120312016243 6774 6329 23729 0.0022 42.3495,-70.3290 0.086 
LC80120312016259 6810 6449 19325 0.0021 42.3592, -70.4100 0.075 
LC80120312017213 - - - - - - 
LC80120312017277 6991 6195 19530 0.0062 41.4803, -70.2837 0.104 
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 777 

Table 3. Statistical results for the remote sensing reflectance matchup data derived from 778 
the NASA, Acolite/SWIR, Acolite/NIR and CSA methods in specific water types. For 779 
each band the best performance is rendered in bold face. The values within the 780 
parentheses refer to the standard deviations.  781 

 782 

 λ 

Coral reefs Turbid waters 

bias MAPD rRMSD cosα N bias MAPD rRMSD cosα 
Mean 
QA 

scores 
N 

NASA 
standard 
method  

443 -2% 24% 34% 

0.99 

(0.02) 
27 

-25% 59% 74% 

0.96 
(0.08) 

0.79 
(0.30) 

18 
482 1% 25% 33% -2% 36% 48% 

561 -13% 25% 31% -1% 18% 24% 

655 -79% 87% 109% -2% 41% 59% 

Acolite/ 
SWIR 

443 -7% 34% 54% 

0.83 
(0.51) 

34 

116% 181% 246% 

0.96 
(0.04) 

0.70 
(0.31) 

23 
482 -5% 32% 47% 65% 107% 142% 

561 -17% 37% 53% 17% 42% 55% 

655 -44% 149% 323% 51% 131% 191% 

Acolite/ 
NIR 

443 -10% 29% 38% 

0.97 
(0.08) 

34 

19% 102% 130% 

0.93 
(0.11) 

0.78 
(0.29) 

23 
482 -11% 28% 35% 7% 55% 72% 

561 -19% 30% 38% -15% 22% 26% 

655 -51% 85% 138% -18% 48% 83% 

Cloud 
shadow 

approach 

443 -15% 36% 46% 

0.98 
(0.02) 

34 

12% 43% 63% 

0.99 

(0.01) 

0.88 

(0.18) 
17 

482 -16% 33% 43% 3% 33% 45% 

561 -16% 31% 41% -18% 31% 39% 

655 32% 133% 220% 32% 95% 175% 
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 784 

 785 

Table 4. Statistical results for the remote sensing reflectance matchup data derived from 786 
the NASA, Acolite/SWIR, Acolite/NIR and CSA methods. For each band the best 787 
performance is rendered in bold face. The values within the parentheses refer to the 788 
standard deviations. 789 

 790 

 λ 
Coral reefs & Turbid waters 

bias MAPD rRMSD cosα N 

NASA 
standard 
method 

443 -8% 33% 43% 

0.98 

(0.05) 
45 482 -3% 30% 40% 

561 ~0% 23% 29% 

655 -21% 42% 50% 

Acolite/ 
SWIR 

443 4% 93% 162% 

0.88 
(0.39) 

57 
482 12% 62% 97% 
561 -9% 39% 54% 
655 -13% 142% 277% 

Acolite/ 
NIR 

443 -6% 59% 88% 

0.96 
(0.10) 

57 
482 -2% 38% 53% 
561 -19% 27% 34% 

655 -34% 70% 119% 

CSA 

443 -11% 38% 52% 

0.98 

(0.10) 
51 

482 -10% 33% 44% 
561 -17% 31% 41% 

655 32% 121% 206% 
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 792 

 793 

Table 5. Statistical results for the remote sensing reflectance matchup data (coral reefs 794 
& turbid waters) after applying the vicarious calibration gains to the TOA radiance. 795 
Refer to Table 4 for CSA retrievals.  796 

 λ 
Gains of Franz et al. (2015) Gains of Pahlevan et al. (2014) 

bias MAPD rRMSD cosα bias MAPD rRMSD cosα 

NASA 
standard 
method  

443 8% 43% 61% 

0.98 

-49% 49% 59% 

0.97 
482 26% 43% 65% 1% 25% 35% 

561 1% 23% 30% -3% 22% 28% 

655 -27% 60% 80% -21% 57% 71% 

Acolite/ 
SWIR 

443 33% 116% 196% 

0.95 

-2% 71% 123% 

0.92 
482 42% 87% 131% 19% 59% 92% 
561 7% 35% 50% -2% 33% 47% 
655 20% 116% 202% 14% 113% 200% 

Acolite/ 
NIR 

443 5% 63% 102% 

0.96 

-36% 59% 74% 

0.93 
482 18% 49% 73% -13% 35% 47% 

561 -14% 26% 33% -24% 29% 36% 

655 -24% 64% 111% -40% 71% 118% 

 797 

 798 

 799 

Table 6. Coefficient of variation of Landsat-8 Rrs measurements (processed by SeaDAS 800 
v7.4) at the matchup sites (calculated over 3×3 pixel neighborhood) with the mean CV 801 
given in parentheses.  802 

 443 
 

482 561 655 

Coral reefs: Puerto Rico 
4-210% 
(31%) 

 3-129% 
(20%) 

3-164% 
(23%) 

5-153% 
(56%) 

Coral reefs: Florida Keys 
6-26% 
(17%) 

 6-25% 
(17%) 

7-20% 
(15%) 

43-135% 
(63%) 

Coral reefs: Maui 
5-121% 
(24%) 

 5-85% 
(19%) 

4-55% 
(15%) 

1-159% 
(75%) 

Boston Harbor 
7-49% 
(23%) 

 4-31% 
(11%) 

2-14% 
(5%) 

3-157% 
(23%) 

Massachusetts Bay 
16-20% 
(19%) 

 7-11% 
(10%) 

6-10% 
(9%) 

20-52% 
(36%) 
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List of figure captions 804 

Figure 1. (a) Discrete sampling stations of in situ optical measurements in the La Parguera 805 
Natural Reserve, Puerto Rico; (b) Sampling areas in the southwest coasts of Maui, Hawaii; (c) 806 
Discrete sampling stations in Florida Keys; (d) Discrete sampling stations in Boston Harbor and 807 
Massachusetts Bay. These true color images are derived from Landsat-8 data. 808 

Figure 2. (a) Patchy hard corals and soft corals and (b) seagrass in the La Parguera Natural 809 
Reserve; (c) hard coral beds (2 m bottom depth) and (d) hard corals (6 m bottom depth, with a 810 
manta ray captured in the view) in Maui.   811 

Figure 3. Hyperspectral remote sensing reflectance spectra measured in (a) optically shallow 812 
coral reef environments and (b) optically deep waters of Massachusetts Bay and Boston Harbor.  813 

Figure 4. Landsat-8 Rrs spectra in shallow coral reef environments derived from (a) NASA 814 
approach, (b) Acolite/SWIR, (c) Acolite/NIR, and (d) cloud-shadow approach. 815 

Figure 5. Landsat-8 estimated Rrs(λ) versus in situ data measured Rrs(λ) at bands of 443, 482, 561, 816 
and 655 nm in the coral reef environments. The dash line refers to 1:1 line, and the black line 817 
represents the linear regression with the fitting parameters given in the plots. The legend given in 818 
(a) also applies to subplots (b), (c) and (d).    819 

Figure 6. Landsat-8 Rrs spectra in optically deep turbid waters of Massachusetts Bay and Boston 820 
Harbor derived from (a) NASA approach, (b) Acolite/SWIR, (c) Acolite/NIR, and (d) cloud-821 
shadow approach. 822 

Figure 7. Landsat-8 estimated Rrs(λ) versus in situ data measured Rrs(λ) at bands of 443, 482, 561, 823 
and 655 nm in Massachusetts Bay and Boston Harbor. The dash line refers to 1:1 line, and the 824 
black line represents the linear regression with the fitting parameters given in the plots. The 825 
legend in (a) also applies to (b), (c) and (d). 826 

Figure 8. Landsat-8 estimated Rrs(λ) versus in situ data measured Rrs(λ) at bands of 443, 482, 561, 827 
and 655 nm with all available matchup pairs. The dash line refers to 1:1 line, and the black line 828 
represents the linear regression with the fitting parameters given in the plots. The legend in (a) 829 
also applies to (b), (c) and (d). 830 

Figure 9. Relative uncertainty of the model-derived properties of (a) apg and (b) bbp with the 831 
Landsat-8 Rrs spectra and in situ measurement Rrs spectra.  832 

Figure 10. The difference of Rrs blue-green band ratios between Landsat-8 matchups in (a) the 833 
shallow coral reefs, and (b) optically deep turbid waters.  834 

Figure 11. Comparison of QA scores for the Landsat-8 Rrs products (LC80120312015240) 835 
derived from different atmospheric correction schemes: (a) NASA standard approach, (b) 836 
Acolite/SWIR, (c) Acolite/NIR, and (d) cloud-shadow approach.   837 
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Figure 1. (a) Discrete sampling stations of in situ optical measurements in the La 841 
Parguera Natural Reserve, Puerto Rico; (b) Sampling areas in the southwest coasts of 842 
Maui, Hawaii; (c) Discrete sampling stations in Florida Keys; (d) Discrete sampling 843 
stations in Boston Harbor and Massachusetts Bay. These true color images are derived 844 
from Landsat-8 data. 845 
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Figure 2. (a) Patchy hard corals and soft corals and (b) seagrass in the La Parguera 850 
Natural Reserve; (c) hard coral beds (2 m bottom depth) and (d) hard corals (6 m 851 
bottom depth, with a manta ray captured in the view) in Maui.   852 
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 856 

Figure 3. Hyperspectral remote sensing reflectance spectra measured in (a) optically 857 
shallow coral reef environments and (b) optically deep waters of Massachusetts Bay and 858 
Boston Harbor.  859 

860 
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 861 

Figure 4. Landsat-8 Rrs spectra in shallow coral reef environments derived from (a) 862 
NASA approach, (b) Acolite/SWIR, (c) Acolite/NIR, and (d) cloud-shadow approach. 863 
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 865 

 866 

Figure 5. Landsat-8 estimated Rrs(λ) versus in situ data measured Rrs(λ) at bands of 443, 867 
482, 561, and 655 nm in the coral reef environments. The dash line refers to 1:1 line, 868 
and the black line represents the linear regression with the fitting parameters given in 869 
the plots. The legend given in (a) also applies to subplots (b), (c) and (d).    870 
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 874 

Figure 6. Landsat-8 Rrs spectra in optically deep turbid waters of Massachusetts Bay and 875 
Boston Harbor derived from (a) NASA approach, (b) Acolite/SWIR, (c) Acolite/NIR, 876 
and (d) cloud-shadow approach. 877 
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 880 

Figure 7. Landsat-8 estimated Rrs(λ) versus in situ data measured Rrs(λ) at bands of 443, 881 
482, 561, and 655 nm in Massachusetts Bay and Boston Harbor. The dash line refers to 882 
1:1 line, and the black line represents the linear regression with the fitting parameters 883 
given in the plots. The legend in (a) also applies to (b), (c) and (d). 884 
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 886 

 887 

Figure 8. Landsat-8 estimated Rrs(λ) versus in situ data measured Rrs(λ) at bands of 443, 888 
482, 561, and 655 nm with all available matchup pairs. The dash line refers to 1:1 line, 889 
and the black line represents the linear regression with the fitting parameters given in 890 
the plots. The legend in (a) also applies to (b), (c) and (d). 891 
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 895 

Figure 9. Relative uncertainty of the model-derived properties of (a) apg and (b) bbp with the 896 
Landsat-8 Rrs spectra and in situ measurement Rrs spectra.  897 
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 899 

Figure 10. The difference of Rrs blue-green band ratios between Landsat-8 matchups in (a) the 900 
shallow coral reefs, and (b) optically deep turbid waters.  901 
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 903 

Figure 11. Comparison of QA scores for the Landsat-8 Rrs products 904 
(LC80120312015240) derived from different atmospheric correction schemes: (a) 905 
NASA standard approach, (b) Acolite/SWIR, (c) Acolite/NIR, and (d) cloud-shadow 906 
approach.   907 
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